Introduction

 

Bread wheat (Triticum aestivum L.) is hexaploid (2n=6x=42) comprising of A, B and D genomes which has largest genome of 17 Gb with 80% repeats (Kumar et al., 2016). Nowadays 95% hexaploid wheat is grown in Pakistan which contributes 10% to the value added in agriculture and 2% to GDP, whereas national yield average is 2.5 t/ha (Anonymous 2018). The common yield of wheat is pretty low due to increase in population and also drastic changes in climatic conditions. Though, there is still need to improvement and genetic manipulation is the best tool to increase the production. Therefore, induced new genetic variation is the key factor and mode of inheritance in altered plant traits to initiate constructive wheat breeding programs for sustainable agriculture (Kharestani et al. 2016). Hence, induced mutation is applied as a successful tool to increase genetic variability while physical and chemical mutagens induce different mutation spectra and induction of new alleles in crop species.

Molecular characterization of wheat genotypes is also beneficial to assess the loss of genetic polymorphism and detect more variability (Kumar et al. 2016). Simple sequence repeat (SSR) markers for genome analysis have many additional properties that evenly disbursed within whole genome, co-dominant and impartial. SSR markers are used effectively to study genetic variation in wheat germplasm (Abbasov et al. 2018). In the present study, SSR markers were used to assess the genetic variation among thirty promising wheat mutants, which may possibly help for the development of new variety with wide range of genetic base in wheat breeding.

 

Materials and Methods

 

We used 50 g pure basic seed of each variety i.e., Sarsabz, Kiran and TD1 for each treatment/dose for induced mutation by gamma rays (50, 100, 150, 200, 250 and 300 Gy), EMS (0. 4, 0. 8, 1.2, 1.6 and 2.0%) and combined treatment from NIA, Tando Jam and ARI, Tando Jam due to their yield stability and adaptability in different climatic conditions. Control was used as non-mutagenized seeds of each variety and raised the M1, M2, M3, M4 and M5 generation. Finally, thirty mutants were selected on the basis of improved agronomical traits, phenotypic diversity and higher yield. Fresh young leaves were collected from field at seedling stage from thirty mutants and DNA was isolated and quantified by using modified CTAB method (Bibi et al. 2012).

Forty SSR primers (Table 1) have been used to amplify thirty mutants and three parents. The cocktail was prepared in 10 μL containing 1 μM SSR forward and reverse primer (Gene link),1X Taq buffer, 0.1 u/μL of Taq enzyme, 2.5 mM of MgCl2, 0.2 mM of dNTPs and 0.8 ng/μL of DNA template for PCR amplification. PCR was programmed for first denaturation for 5 min at 95°C, followed by thirty five repeats for 1 min at 95°C, 1 min at 55°C, 1.30 min at 72°C and one last step of extension at 72°C for 07 min. PCR amplification DNA segment were resolved by 3% agarose gel. Subsequently, gel photograph was documented via gel documentation system of Vilber Lourmat, France.

Table 1: Simple sequence repeats (SSR) primers for characterization of the wheat mutants

 

S. #

Primers

Sequence (5` to 3`)

Temp. (°C)

%GC

1

WMS508

F: GTTATAGTAGCATATAATGGCC

R: GTGCTGCCATGATATTT

55

48

36

41

2

WMS361

F: GTAACTTGTTGCCAAAGGGG

R: ACAAAGTGGCAAAAGGAGACA

57

56

50

43

3

WMS193

F: CTTTGTGCACCTCTCTCTCC

R: AATTGTGTTGATGATTTGGGG

59

54

55

38

4

WMS644

F: GTGGGTCAAGGCCAAGG

R: AGGAGTAGCGTGAGGGGC

58

61

65

68

5

WMS-71

F: GGCAGAGCAGCGAGACTC

R: CAAGTGGAGCATTAGGTACACG

61

60

67

50

6

WMS-319

F: GGTTGCTGTACAAGTGTTCACG

R: CGGGTGCTGTGTGTAATGAC

60

59

50

55

7

WMS-429

F: TTGTACATTAAGTTCCCATTA

R: TTTAAGGACCTACATGACAC

50

53

29

40

8

Gwm361

GTAACTTGTTGCCAAAGGGG

ACAAAGTGGCAAAAGGAGACA

52

50

50

43

9

Gwm219

GATGAGCGACACCTAGCCTC

GGGGTCCGAGTCCACAAC

56

55

60

67

10

Wmc221

ACGATAATGCAGCGGGGAAT

GCTGGGATCAAGGGATCAAT

65

63

50

50

11

Wmc121

GGCTGTGGTCTCCCGATCATTC

ACTGGACTTGAGGAGGCTGGCA

69

69

59

59

12

Xcfd68

TTTGCAGCATCACACGTTTT

AAAATTGTATCCCCCGTGGT

60

55

40

45

13

Gwm325

TTTCTTCTGTCGTTCTCTTCCC

TTTTTACGCGTCAACGACG

55

63

45

47

14

Gwm179

AAGTTGAGTTGATGCGGGAG

CCATGACCAGCATCCACTC

52

53

50

58

15

Gwm335

CGTACTCCACTCCACACGG

CGGTCCAAGTGCTACCTTTC

55

54

63

55

16

Xgwm46

GCA CGT GAA TGG ATT GGA C

TGA CCC AAT AGT GGT CA

51

45

53

47

17

Xgwm2

CTG CAA GCC TGT GAT CAA CT

CAT TCT CAA ATC GAA CA

52

40

50

35

18

Xgwm18

TGG CGC CAT GAT TGC ATT ATC ATC TTC

GGT TGC TGA AGA ACC TTA TTT AGG

58

54

44

42

19

Xgwm33

GGA GTC ACA CTT GTT TGT GCA

CAC TGC ACA CCT AAC TAC GTG C

52

57

48

55

20

Xgwm5

GCC AGC TAC CTC GAT ACA ACT C

AGA AAG GGC CAG GCT AGT AGT

57

54

55

52

21

Xgwm44

GTT GAG CTT TTC AGT TCG GC

ACT GGC ATC CAC TGA GCT G

52

53

50

58

22

Xpsp2999

TCC CGC CAT GAG TCA ATC

TTG GGA GAC ACA TTG GCC

50

50

56

56

23

Xpsp3000

GCA GAC CTG TGT CAT TGG TC

GAT ATA GTG GCA GCA GGA TAC

54

52

55

48

24

Xcn15

GGT GAT GAG TGG CAC AGG

CCC AAC AGT TGC AGA AAA TTA G

53

51

61

41

25

Xcn13

AGA ACA GTC TTC TAG GTT AG

CGA GGG ACA GAC GAA TC

48

49

40

59

26

DuPw004

GGTCTGGTCGGAGAAGAAGC

TGGGAGCGTACGTTGTATCC

56

54

60

55

27

DuPw023

ATTAGACACGACCAAACGGG

TCAAACAAACAACAGCCAGC

52

50

50

45

28

DuPw043

TTTGAACGGAATTTGAGAATTT

AGGGTGTGAACATGGAGGAG

46

54

27

55

29

DuPw108a

TGAAGAGTGCGATGTGAAGG

TGTGACAGAAACTACTAACATTGCG

52

54

50

40

30

DuPw108b

TGTTTCTTCCTCGCGTAACC

CCTCGAATCTCCCAGTTATCG

52

54

50

52

31

DuPw123

CAACGAGAACCAGAAGACCG

CCCGTTACACTTGGATGCC

54

53

55

58

32

DuPw217

CGAATTACACTTCCTTCTTCCG

CGAGCGTGTCTAACAAGTGC

53

54

45

55

33

DuPw216

ACAAACCTCTCCCTCTCACG

ATGATGATTCAGCGAGTCGG

54

52

55

50

34

DuPw210

CGATTTGGATTCTTCCGC

AGAGCCTTTGAAGAGCAGGG

48

54

50

55

35

DuPw207

GAGAGTATCAATAAAGCTAGATGCCC

GCATTTGGAAGGAGATGTGG

56

52

42

50

36

DuPw205

ATCCAGATCACACCAAACGG

CTTCCGCTTCATCTTCTTGC

52

52

50

50

37

DuPw238

TTCATAGACGCAACTAGCCG

GACTTTGGTTGTTAAAGGCG

52

50

50

45

38

DuPw398

CTGAGCCCTCTTTGCTATGC

TCGGTGAGATTGAAAGGTCC

54

52

55

50

39

DuPw254

TTAACCATGCAGCAACTTCG

GTGTGTACTAACGGCTACGGC

50

56

45

57

40

DuPw165

TAGGTCTCGACAACAAGCCG

TCACCACTTGGAGGTTACTGC

54

54

55

52

 

Data were recorded as presence of allele and absence of allele through UVi Band Map software. The genetic attributes were created by software of population genetic structure named “POPGENE” (Yeh et al. 1997). Genetic kinship among the populations was calculated by the Nei’s formula and also used to find phylogenetic relationship through un-weight pair group method with the arithmetic averages (UPGMA) (Nei and Li 1979).

 

Results

 

Estimation of genetic variability among promising mutants

 

Out of 40 primers, fourteen alleles produced polymorphic amplification from the genomic DNA of wheat mutants with parents. The total number of the amplified alleles was 269 across the set of 33 mutants with parent. The share of the polymorphic alleles with a mean was 75.46% (Table 2). The individual genotype of 33 mutants and parents created polymorphism and among these few monomorphic alleles were also ascertained (Fig. 1). Primer WMS-644 amplified six DNA fragments, in which five were polymorphic and varied from 200 bp to 1.25 kb.

 

Genetic variation within population

 

Genetic variation between the mutants and parents is given in Table 1. In individual mutants along with parent, the percentage of P allele per population varied from 66.7–87%, with a mean of 78.96%. Number of alleles (Na) ranged from 1.3 to 2.0, while number of effective alleles (Ne) ranged from 1.325 to 1.925. Heterozygosity (H) varied from 0.165 to 0.479 to with a mean of 0.415. Shanon Index (I) showed a range of 0.23 to 0.672, with an average of 0.598. In 30 mutants and three parents of bread wheat, various levels of genetic dissimilarity were observed. The maximum dissimilarity was observed in mutant SE4/12-1, while the minimum was detected in mutant SG1/12-41 (Table 3). Dendrogram based on UPGMA (Fig. 2), the varieties were classified into three groups and nine clusters A to I.

Table 2: Genetic variation statistics for all alleles of mutants and their parents

 

S. #

Mutants

No of P alleles

% of P alleles

Na

Ne

H

I

1

SE4/12-1-1

9

77.8

2.0000

1.9252

0.4794

0.6722

2

SE4/12-1-2

4

66.7

2.0000

1.7333

0.4213

0.6118

3

SE4/12-3

7

77.8

2.0000

1.8667

0.4630

0.6554

4

SE4/12-4

10

83.3

2.0000

1.8394

0.4529

0.6445

5

SE4/12-5

6

75

2.0000

1.8218

0.4488

0.6406

6

SE4/12-6

8

80

2.0000

1.5509

0.3450

0.5254

7

SE5/12-7

11

85

2.0000

1.6687

0.3773

0.5561

8

SE5/12-8

9

82

2.0000

1.8218

0.4488

0.6406

9

SE5/12-9

9

82

2.0000

1.8218

0.4488

0.6406

10

SE5/12-10

9

82

2.0000

1.7000

0.3944

0.5779

11

TCT4/12-1

10

83

1.6667

1.5551

0.3007

0.4284

12

TCT4/12-2

10

83

2.0000

1.8218

0.4488

0.6406

13

SE5/12-12

10

83

2.0000

1.7628

0.4266

0.6164

14

SE5/12-13

11

85

2.0000

1.7632

0.4324

0.6238

15

SE5/12-15

8

80

2.0000

1.8533

0.4596

0.6520

16

SE5/12-17

5

71

2.0000

1.8533

0.4596

0.6520

17

SE5/12-19

4

66.7

2.0000

1.6727

0.3994

0.5882

18

SG3/12-20

8

80

2.0000

1.9119

0.4760

0.6688

19

SG3/12-21

10

83.3

2.0000

1.8218

0.4448

0.6406

20

SG3/12-23

7

77.8

2.0000

1.9119

0.4760

0.6688

21

SG3/12-25

6

75

2.0000

1.8218

0.4488

0.6406

22

SG2/12-26

9

77.8

2.0000

1.7632

0.4324

0.6238

23

SG2/12-27

6

75

2.0000

1.8533

0.4596

0.6520

24

SE2/12-29

4

67

2.0000

1.7632

0.4324

0.6238

25

SG4/12-35

8

80

2.0000

1.7632

0.4324

0.6238

26

SG1/12-38

12

86

2.0000

1.5509

0.3450

0.5254

27

SG1/12-41

6

75

1.3333

1.3252

0.1646

0.2290

28

SG1/12-43

13

87

1.6667

1.4060

0.2513

0.3760

29

KCT7/12-44

8

80

2.0000

1.7632

0.4324

0.6238

30

SCT6/9-

10

83

2.0000

1.8533

0.4596

0.6520

31

Sarsabz

7

77.8

2.0000

1.5509

0.3450

0.5254

32

Kiran-95

7

77.8

2.0000

1.8533

0.4596

0.6520

33

TD-1

8

80

2.0000

1.7632

0.4324

0.6238

Abbreviations: P: Polymorphic allele; Na: Observed number of alleles; Ne: Effective number of alleles; h: Nei's gene diversity; I: Shannon's index

 

 

Fig. 1: Amplification profile of 33 wheat genotypes with primer WMS-644 by SSR makers (Number are correspondent to names of the genotypes presented in Table 1).

 

 

Population genetic structure and differentiation

 

Wheat mutants and their parent exhibited different levels of genetic variation among the populations in Table 2. The total genetic diversity (HT) and observed genetic diversity (Hs) within the populations were estimated about 0.50 and 0.42, respectively. The genetic diversity within populations (Ds) was recorded as 16.39% of the whole diversity which showed that high genetic diversity was observed among the populations. The Nm (gene flow) value was 2.55 showing that number of genes migrating between the populations was maximum (Table 4).

Discussion

 

In Pakistan, wheat genotypes such as Sarsabz, kiran-91 and TD1 are high yielding popular varieties but due to climate change these varieties are susceptible to biotic and abiotic stress. To address this issue, we developed mutants to create new genetic variation for the improvement of these varieties. This genotypic variation is useful for the parental selection, breeder rights, and varietal development (Abbasov et al 2018). Our results revealed that the genetic variability appeared in all the mutants/parents which produced 75.46% polymorphic fragments. Our promising mutants exhibited the genetic polymorphism through their banding pattern. SSR markers confirmed that the polymorphism might be a result of variations in nucleotides because of addition or deletion between two priming positions (Kumar et al 2016).

 Table 3: Nei's Original Measures of Genetic Identity and Genetic distance

 

Pop ID

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

1

****

0.9559

0.9223

0.9425

0.9027

0.8069

0.8203

0.9027

0.9027

0.9271

0.7400

0.8950

0.8625

0.8744

0.9659

0.9892

0.8795

0.9180

0.8950

0.9967

0.9027

0.9652

0.9892

0.9652

0.8971

0.8704

0.6771

0.6954

0.8971

0.8961

0.8704

0.9194

0.8744

2

0.045

****

0.8969

0.8101

0.9267

0.8286

0.7499

0.8002

0.8002

0.7858

0.6522

0.7783

0.8030

0.7554

0.9154

0.9816

0.9296

0.8848

0.7783

0.9312

0.9267

0.8747

0.9390

0.9993

0.8101

0.6954

0.7679

0.5741

0.8101

0.8066

0.8888

0.8728

0.8701

3

0.081

0.1088

****

0.8385

0.9644

0.8222

0.8219

0.9644

0.9644

0.8551

0.9166

0.9417

0.8788

0.9056

0.8594

0.9281

0.9674

0.9658

0.9417

0.9193

0.9644

0.9056

0.9281

0.9056

0.9727

0.7598

0.8386

0.8275

0.9727

0.9281

0.7598

0.9968

0.9056

4

0.059

0.2106

0.1761

****

0.7950

0.7566

0.8653

0.9045

0.9045

0.9608

0.7442

0.9265

0.8802

0.9348

0.9512

0.8843

0.7193

0.8755

0.9265

0.9581

0.7950

0.9348

0.9212

0.8269

0.8635

0.9847

0.5327

0.7760

0.8695

0.9212

0.8173

0.8543

0.8269

5

0.102

0.0761

0.0363

0.2294

****

0.9308

0.8779

0.8889

0.8889

0.7486

0.8488

0.8815

0.9222

0.8612

0.8896

0.9122

0.9723

0.9800

0.8815

0.8808

1.0000

0.8171

0.8748

0.9165

0.8833

0.6993

0.9270

0.8011

0.8833

0.9200

0.8691

0.9427

0.9707

6

0.215

0.1880

0.1957

0.2790

0.0718

****

0.9513

0.7609

0.7609

0.6131

0.7303

0.7952

0.9578

0.8173

0.8897

0.7860

0.8261

0.9317

0.7952

0.7753

0.9308

0.6553

0.7288

0.8227

0.7161

0.6838

0.8981

0.7939

0.7161

0.8948

0.9435

0.7911

0.9847

7

0.198

0.2878

0.1961

0.1446

0.1303

0.0500

****

0.8430

0.8430

0.7329

0.8046

0.8922

0.9940

0.9276

0.9103

0.7613

0.7468

0.9389

0.8922

0.8117

0.8779

0.7200

0.7496

0.7543

0.7823

0.8400

0.7833

0.9041

0.7823

0.9624

0.8933

0.8134

0.9616

8

0.102

0.2229

0.0363

0.1004

0.1177

0.2732

0.1707

****

1.0000

0.9252

0.9474

0.9925

0.8859

0.9707

0.8522

0.8748

0.8659

0.9420

0.9925

0.9187

0.8889

0.9265

0.9122

0.8171

0.9928

0.8621

0.7165

0.8964

0.9928

0.9574

0.6993

0.9800

0.8612

9

0.102

0.2229

0.0363

0.1004

0.1177

0.2732

0.1707

0.0000

****

0.9252

0.9474

0.9925

0.8859

0.9707

0.8522

0.8748

0.8659

0.9420

0.9925

0.9187

0.8889

0.9265

0.9122

0.8171

0.9928

0.8621

0.7165

0.8964

0.9928

0.9574

0.6993

0.9800

0.8612

10

0.076

0.2411

0.1565

0.0399

0.2895

0.4892

0.3108

0.0777

0.0777

****

0.7645

0.9181

0.7708

0.8977

0.8658

0.8874

0.7308

0.8209

0.9181

0.9543

0.7486

0.9819

0.9469

0.8079

0.9187

0.9420

0.4604

0.7205

0.9187

0.8605

0.6719

0.8821

0.7236

11

0.301

0.4274

0.0871

0.2955

0.1639

0.3143

0.2175

0.0540

0.0540

0.2685

****

0.9408

0.8450

0.9205

0.6963

0.7164

0.8259

0.8975

0.9408

0.7545

0.8488

0.7638

0.7496

0.6666

0.9401

0.7169

0.7815

0.9494

0.9401

0.9102

0.5661

0.9303

0.8234

12

0.111

0.2506

0.0601

0.0763

0.1262

0.2292

0.1141

0.0075

0.0075

0.0854

0.0610

****

0.9225

0.9928

0.8748

0.8522

0.8301

0.9497

1.0000

0.9111

0.8815

0.9045

0.8896

0.7950

0.9707

0.9034

0.7104

0.9285

0.9707

0.9800

0.7335

0.9574

0.8833

13

0.148

0.2195

0.1292

0.1276

0.0810

0.0431

0.0061

0.1211

0.1211

0.2604

0.1684

0.0807

****

0.9451

0.9265

0.8156

0.8134

0.9710

0.9225

0.8535

0.9222

0.7720

0.8034

0.8078

0.8369

0.8419

0.8223

0.9109

0.8369

0.9808

0.8974

0.8699

0.9809

14

0.134

0.2938

0.0992

0.0675

0.1494

0.2017

0.0751

0.0298

0.0298

0.1079

0.0828

0.0073

0.0565

****

0.8843

0.8174

0.7828

0.9434

0.9928

0.8902

0.8612

0.8695

0.8543

0.7617

0.9348

0.9239

0.6941

0.9465

0.9348

0.9880

0.7566

0.9212

0.8921

15

0.035

0.0884

0.1516

0.0501

0.1170

0.1168

0.0940

0.1600

0.1600

0.1441

0.3620

0.1338

0.0763

0.1230

****

0.9315

0.8089

0.9228

0.8748

0.9564

0.8896

0.8843

0.9189

0.9212

0.8174

0.8948

0.6877

0.7312

0.8174

0.9189

0.9520

0.8503

0.9212

16

0.011

0.0186

0.0746

0.1230

0.0919

0.2408

0.2727

0.1338

0.1338

0.1194

0.3335

0.1600

0.2038

0.2016

0.0710

****

0.9172

0.8996

0.8522

0.9796

0.9122

0.9512

0.9874

0.9880

0.8843

0.7911

0.7061

0.6341

0.8843

0.8503

0.8482

0.9189

0.8543

17

0.128

0.0730

0.0332

0.3294

0.0281

0.1911

0.2920

0.1440

0.1440

0.3136

0.1913

0.1862

0.2066

0.2449

0.2121

0.0864

****

0.9242

0.8301

0.8585

0.9723

0.8251

0.8814

0.9299

0.8885

0.6043

0.8997

0.7061

0.8885

0.8381

0.7670

0.9464

0.8876

18

0.086

0.1224

0.0384

0.1330

0.0202

0.0708

0.0631

0.0597

0.0597

0.1974

0.1081

0.0516

0.0294

0.0583

0.0804

0.1058

0.0789

****

0.9497

0.9085

0.9800

0.8528

0.8868

0.8902

0.9207

0.8104

0.8726

0.8871

0.9207

0.9796

0.8685

0.9564

0.9808

19

0.111

0.2506

0.0601

0.0763

0.1262

0.2292

0.1141

0.0075

0.0075

0.0854

0.0610

0.0000

0.0807

0.0073

0.1338

0.1600

0.1862

0.0516

****

0.9111

0.8815

0.9045

0.8896

0.7950

0.9707

0.9034

0.7104

0.9285

0.9707

0.9800

0.7335

0.9574

0.8833

20

0.003

0.0713

0.0842

0.0428

0.1270

0.2545

0.2086

0.0847

0.0847

0.0468

0.2818

0.0931

0.1585

0.1163

0.0446

0.0206

0.1526

0.0960

0.0931

****

0.8808

0.9808

0.9924

0.9434

0.9129

0.8966

0.6389

0.7094

0.9129

0.8996

0.8385

0.9228

0.8528

21

0.102

0.0761

0.0363

0.2294

0.0000

0.0718

0.1303

0.1177

0.1177

0.2895

0.1639

0.1262

0.0810

0.1494

0.1170

0.0919

0.0281

0.0202

0.1262

0.1270

****

0.8171

0.8748

0.9165

0.8833

0.6993

0.9270

0.8011

0.8833

0.9200

0.8691

0.9427

0.9707

22

0.035

0.1339

0.0992

0.0675

0.2020

0.4226

0.3285

0.0763

0.0763

0.0183

0.2695

0.1004

0.2588

0.1398

0.1230

0.0501

0.1923

0.1592

0.1004

0.0194

0.2020

****

0.9880

0.8921

0.9348

0.8834

0.5506

0.6814

0.9348

0.8543

0.7161

0.9212

0.7617

23

0.011

0.0629

0.0746

0.0821

0.1338

0.3164

0.2882

0.0919

0.0919

0.0546

0.2882

0.1170

0.2189

0.1575

0.0846

0.0127

0.1262

0.1201

0.1170

0.0076

0.1338

0.0121

****

0.9512

0.9212

0.8482

0.6352

0.6662

0.9212

0.8629

0.7911

0.9315

0.8174

24

0.035

0.0007

0.0992

0.1901

0.0763

0.1952

0.2820

0.2020

0.2020

0.2134

0.4056

0.2294

0.2135

0.2723

0.0821

0.0121

0.0727

0.1163

0.2294

0.0583

0.0763

0.1141

0.0501

****

0.8269

0.7161

0.7581

0.5874

0.8269

0.8174

0.8834

0.8843

0.8695

25

0.109

0.2106

0.0277

0.1398

0.1241

0.3340

0.2456

0.0073

0.0073

0.0848

0.0617

0.0298

0.1780

0.0675

0.2016

0.1230

0.1182

0.0826

0.0298

0.0912

0.1241

0.0675

0.0821

0.1901

****

0.8227

0.7120

0.8518

1.0000

0.9212

0.6553

0.9880

0.8269

26

0.139

0.3633

0.2747

0.0155

0.3577

0.3801

0.1743

0.1403

0.1403

0.0598

0.3229

0.1016

0.1721

0.0791

0.1112

0.2344

0.5037

0.2102

0.1016

0.1092

0.3577

0.1240

0.1646

0.3340

0.1952

****

0.4260

0.7810

0.8227

0.8897

0.7404

0.7860

0.7566

27

0.390

0.2640

0.1760

0.6298

0.0758

0.1075

0.2443

0.3334

0.3334

0.7757

0.2466

0.3419

0.1957

0.3652

0.3744

0.3480

0.1057

0.1363

0.3419

0.4480

0.0758

0.5967

0.4538

0.2769

0.3397

0.8533

****

0.7396

0.7120

0.7822

0.7479

0.8006

0.9015

28

0.363

0.5550

0.1894

0.2536

0.2217

0.2308

0.1008

0.1093

0.1093

0.3278

0.0519

0.0742

0.0934

0.0550

0.3131

0.4555

0.3480

0.1198

0.0742

0.3433

0.2217

0.3837

0.4061

0.5320

0.1604

0.2472

0.3016

****

0.8518

0.9379

0.6353

0.8409

0.8526

29

0.109

0.2106

0.0277

0.1398

0.1241

0.3340

0.2456

0.0073

0.0073

0.0848

0.0617

0.0298

0.1780

0.0675

0.2016

0.1230

0.1182

0.0826

0.0298

0.0912

0.1241

0.0675

0.0821

0.1901

0.0000

0.1952

0.3397

0.1604

****

0.9212

0.6553

0.9880

0.8269

30

0.110

0.2150

0.0746

0.0821

0.0833

0.1112

0.0383

0.0435

0.0435

0.1502

0.0941

0.0202

0.0194

0.0121

0.0846

0.1621

0.1767

0.0206

0.0202

0.1058

0.0833

0.1575

0.1474

0.2016

0.0821

0.1168

0.2457

0.0641

0.0821

****

0.8326

0.9315

0.9512

31

0.139

0.1179

0.2747

0.2017

0.1403

0.0582

0.1129

0.3577

0.3577

0.3976

0.5690

0.3099

0.1083

0.2790

0.0492

0.1646

0.2653

0.1410

0.3099

0.1761

0.1403

0.334

0.2344

0.1240

0.4226

0.3005

0.2905

0.4537

0.4226

0.1833

****

0.7288

0.9239

32

0.084

0.1361

0.0032

0.1575

0.0591

0.2344

0.2065

0.0202

0.0202

0.1254

0.0722

0.0435

0.1393

0.0821

0.1621

0.0846

0.0551

0.0446

0.0435

0.0804

0.0591

0.0821

0.0710

0.1230

0.0121

0.2408

0.2224

0.1733

0.0121

0.0710

0.3164

****

0.8843

33

0.134

0.1392

0.0992

0.1901

0.0298

0.0155

0.0388

0.1494

0.1494

0.3235

0.1944

0.1241

0.0193

0.1141

0.0821

0.1575

0.1192

0.0194

0.1241

0.1592

0.0298

0.2723

0.2016

0.1398

0.1901

0.2790

0.1037

0.1595

0.1901

0.0501

0.0791

0.1230

****

Nei's genetic identity (above diagonal) and genetic distance (below diagonal)

 

Table 4: Nei's Analysis of Gene Diversity in Subdivided Populations

 

Locus

Sample Size

Ht

Hs

Gst

Nm*

Mean

210

0.4959

0.4146

0.1639

2.5506

St. Dev

 

0.0000

0.0004

 

 

* Nm = estimate of gene flow from Gst or Gcs. E.g., Nm = 0.5(1 - Gst)/Gst

See McDermott and McDonald, Ann. Rev. Phytopathol. 31:353-373 (1993)

 

Fig 2: Dendrogram showing Nei's genetic distance by UPGMA method

 

The present, results showed large differentiation, based on the Nei's analysis of gene diversity and a significant degree of genetic differences was exhibited among all the wheat genotypes. It is the correlation of gametes in subpopulations relative to gametes moved at indiscriminately from the complete population and studies the overall genetic divergence among subpopulations (Aboughadareh et al. 2018). It describes expected degree of heterozygosity within a population. Results showed that the gene flow among the mutants was high enough. The migration of genes in distinct populations is high in comparison to those two populations which have the same or less genetic diversity. The population divergence may be explained in terms of genetic drift when one migrant per generation is received (Aboughadareh et al. 2018). It could be one of the reasons that gene flow constraints phylogeny by combining the gene pools of the populations and accordingly prevents the event of differences in genetic diversity. Moreover, high genotypic variations are recognized to control gene flow.

Results showed genetic relationship among the promising mutants with their parents and proved that mutation is valuable technique to create the new alleles in bread wheat. Previously, Bibi et al. (2012) recorded that crop plant improvement depends on the data about the genetic kinships among plants within or between crop species. The information regarding the genetic similarity is useful to prevent any possible risk of elite genotypes developing genetically uniform. It was also reported that breeders usually use the exotic material from ICARDA/CIMMYT crossed with indigenous cultivars to develop the variety which may cause the narrow genetic stock for wheat (Sundeep et al. 2016). Thus, conscious struggles have to be generated to expand the parental genetic makeup to create assured high genetic variability among the genotypes of the crop plants. In the present study, among 30 mutants, ten mutants were grouped together in one group (71%). Though, eleven mutants and a single parent Kiran-95 in group two was observed the most distinguishable one and these eleven mutants in the same group showed the sharing of the same blood among the mutants (70%). However, nine mutants and two parents Sarsabz and TD1 formed another distinguished group which exhibited the 37% distinctness among the mutants. Phylogenetic relationship not only gives the information regarding genetic similarity but also provides a chance to find new and helpful genes (Sajjad et al. 2018). Thus, conscious struggles have to be generated to expand the parental genetic makeup to create assured high genetic variability among the genotypes of the crop plants.

 

Conclusion

 

Our mutants manifested significant degree of genetic differences among the genotypes with 16.4% of the total variation among the mutants whereas heterozygosity Hs and Ht was recorded 0.4146 and 0.4959, respectively while gene flow among the mutants was high enough (2.55). It also provides a better gene flow of wheat mutants and a source of variation for the selection of the parents to speed up the breeding program.

 

Acknowledgement

 

I am very thankful to PAEC for providing me funds for this research work. It is the part of my Ph.D. thesis submitted to University of Sindh, Jamshoro (Higher Education Commission), Pakistan.

 

Author Contributions

 

Sajida bibi as a first author contribution is 70% and second author rubina has 30% contribution in this research paper. I tried to write in a correction grid but I could not write on it.

 

References

 

Abbasov M, Z Akparov, T Gross, S Babayeva, V Izzatullayeva, E Hajiyev, K Rustamov, P Gross, M Tekin, T Akar, S Chao (2018). Genetic relationship of diploid wheat (Triticum spp.) species assessed by SSR markers. Genet Resour Crop Evol 65:1441‒1453

Aboughadareh PA, J Ahmadi, AA Mehrabi, A Etminanand, M Moghaddam (2018). Insight into the genetic variability analysis and relationships among some Aegilops and Triticum species, as genome progenitors of bread wheat, using SCoT markers. Plant Biosyst 152:694‒703

Anonymous (2018). Economic Wing, M/o NFS&R. Agriculture Statistics of Pakistan, 20172018

Bibi S, IA Khan, MU Dahot, A Khatri, MH Naqvi, MA Siddiqui, S Yasmeen, N Seema (2012). Estimation of genetic variability among elite wheat genotypes using random amplified polymorphic DNA (RAPD) analysis. Pak J Bot 44:20332040

Kharestani H, NN Qomi, A Asqar, AA Mehrabi (2016). The evaluation of genomic relationships and diversity of wild and cultivated wheats possessing A genome in different ploidy levels using SSR markers. J Plant Mol Breed 4:1725

Kumar S, V Kumar, P Kumari, AK Singh, R Singh (2016). DNA fingerprinting and genetic diversity studies in wheat genotypes using SSR markers. J Environ Biol 37:319–326

Nei M, WH Li (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Nat Acad Sci 76:52695273

Sajjad M, HK Sultan, S Munawar (2018). Patterns of allelic diversity in spring wheat populations by SSR markers. Cytol Genet 52:155160

Sundeep K, K Vinay, K Pummy, KS Amit, S Rakesh (2016). DNA fingerprinting and genetic diversity studies in wheat genotypes using SSR markers. J Environ Biol 37:319326

Yeh FC, RC Yang, TBJ Boyle, ZH Ye, JX Mao (1997). POPGENE, the User-friendly Shareware for Population Genetic Analysis. Edmonton, Molecular Biology and Biotechnology Centre, University of Alberta, Canada